45 research outputs found

    The Role of Corpus Callosum Development in Functional Connectivity and Cognitive Processing

    Get PDF
    The corpus callosum is hypothesized to play a fundamental role in integrating information and mediating complex behaviors. Here, we demonstrate that lack of normal callosal development can lead to deficits in functional connectivity that are related to impairments in specific cognitive domains. We examined resting-state functional connectivity in individuals with agenesis of the corpus callosum (AgCC) and matched controls using magnetoencephalographic imaging (MEG-I) of coherence in the alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–55 Hz) bands. Global connectivity (GC) was defined as synchronization between a region and the rest of the brain. In AgCC individuals, alpha band GC was significantly reduced in the dorsolateral pre-frontal (DLPFC), posterior parietal (PPC) and parieto-occipital cortices (PO). No significant differences in GC were seen in either the beta or gamma bands. We also explored the hypothesis that, in AgCC, this regional reduction in functional connectivity is explained primarily by a specific reduction in interhemispheric connectivity. However, our data suggest that reduced connectivity in these regions is driven by faulty coupling in both inter- and intrahemispheric connectivity. We also assessed whether the degree of connectivity correlated with behavioral performance, focusing on cognitive measures known to be impaired in AgCC individuals. Neuropsychological measures of verbal processing speed were significantly correlated with resting-state functional connectivity of the left medial and superior temporal lobe in AgCC participants. Connectivity of DLPFC correlated strongly with performance on the Tower of London in the AgCC cohort. These findings indicate that the abnormal callosal development produces salient but selective (alpha band only) resting-state functional connectivity disruptions that correlate with cognitive impairment. Understanding the relationship between impoverished functional connectivity and cognition is a key step in identifying the neural mechanisms of language and executive dysfunction in common neurodevelopmental and psychiatric disorders where disruptions of callosal development are consistently identified

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Get PDF
    Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions

    Resting-State Networks and the Functional Connectome of the Human Brain in Agenesis of the Corpus Callosum

    No full text
    The corpus callosum is the largest white matter fiber bundle connecting the two cerebral hemispheres. In this work, we investigate the effect of callosal dysgenesis on functional magnetic resonance imaging (fMRI) resting-state networks and the functional connectome. Since alternate commissural routes between the cerebral hemispheres exist, we hypothesize that bilateral cortical networks can still be maintained in partial or even complete agenesis of the corpus callosum (AgCC). However, since these commissural routes are frequently indirect, requiring polysynaptic pathways, we hypothesize that quantitative measurements of interhemispheric functional connectivity in bilateral networks will be reduced in AgCC compared with matched controls, especially in the most highly interconnected cortical regions that are the hubs of the connectome. Seventeen resting-state networks were extracted from fMRI of 11 subjects with partial or complete AgCC and 11 matched controls. The results show that the qualitative organization of resting-state networks is very similar between controls and AgCC. However, interhemispheric functional connectivity of precuneus, posterior cingulate cortex, and insular-opercular regions was significantly reduced in AgCC. The preserved network organization was confirmed with a connectomic analysis of the resting-state fMRI data, showing five functional modules that are largely consistent across the control and AgCC groups. Hence, the reduction or even complete absence of callosal connectivity does not affect the qualitative organization of bilateral resting-state networks or the modular organization of the functional connectome, although quantitatively reduced functional connectivity can be demonstrated by measurements within bilateral cortical hubs, supporting the hypothesis that indirect polysynaptic pathways are utilized to preserve interhemispheric temporal synchrony

    Autism traits in individuals with agenesis of the corpus callosum.

    No full text
    Autism spectrum disorders (ASD) have numerous etiologies, including structural brain malformations such as agenesis of the corpus callosum (AgCC). We sought to directly measure the occurrence of autism traits in a cohort of individuals with AgCC and to investigate the neural underpinnings of this association. We screened a large AgCC cohort (n = 106) with the Autism Spectrum Quotient (AQ) and found that 45 % of children, 35 % of adolescents, and 18 % of adults exceeded the predetermined autism-screening cut-off. Interestingly, performance on the AQ's imagination domain was inversely correlated with magnetoencephalography measures of resting-state functional connectivity in the right superior temporal gyrus. Individuals with AgCC should be screened for ASD and disorders of the corpus callosum should be considered in autism diagnostic evaluations as well

    The Contribution of the Corpus Callosum to Language Lateralization.

    No full text
    The development of hemispheric lateralization for language is poorly understood. In one hypothesis, early asymmetric gene expression assigns language to the left hemisphere. In an alternate view, language is represented a priori in both hemispheres and lateralization emerges via cross-hemispheric communication through the corpus callosum. To address this second hypothesis, we capitalized on the high temporal and spatial resolution of magnetoencephalographic imaging to measure cortical activity during language processing, speech preparation, and speech execution in 25 participants with agenesis of the corpus callosum (AgCC) and 21 matched neurotypical individuals. In contrast to strongly lateralized left hemisphere activations for language in neurotypical controls, participants with complete or partial AgCC exhibited bilateral hemispheric activations in both auditory or visually driven language tasks, with complete AgCC participants showing significantly more right hemisphere activations than controls or than individuals with partial AgCC. In AgCC individuals, language laterality positively correlated with verbal IQ. These findings suggest that the corpus callosum helps to drive language lateralization.Significance statementThe role that corpus callosum development has on the hemispheric specialization of language is poorly understood. Here, we used magnetoencephalographic imaging during linguistic tests (verb generation, picture naming) to test for hemispheric dominance in patients with agenesis of the corpus callosum (AgCC) and found reduced laterality (i.e., greater likelihood of bilaterality or right hemisphere dominance) in this cohort compared with controls, especially in patients with complete agenesis. Laterality was positively correlated with behavioral measures of verbal intelligence. These findings provide support for the hypothesis that the callosum aids in functional specialization throughout neural development and that the loss of this mechanism correlates with impairments in verbal performance
    corecore